Negotiating and Managing University/Industry Collaborative Space Science: An Academic Perspective

Steve Eisner
Stanford University Export Control Officer
ACI Satellite and Space Export Controls Conference
Washington, DC
October 2nd, 2009
If Industry is from Venus, Academia is from......A Different Galaxy

• Not just conflicting goals and objectives, but different cultures
 ▫ Universities do not operate the same way as industry, and industry expectations should be calibrated accordingly
 ▫ Universities have a strong culture of openness which they see as fundamental to their operation
 ▫ Most universities maintain policies that prohibit secrecy or confidentiality of research results
 ▫ Many universities do not allow for segregated facilities and identification procedures based on citizenship or nationality
 ▫ “National Security” Restrictions Offensive to Some Academics
 • Nat. Sec. objectives seen as conflicting with research objectives
 • Grad students as their children – equal treatment is paramount
Export Controls Are New To Most Universities - Why?

• Emerging security and immigration concerns post 9/11
 ▫ Sponsored research contains progressively greater restrictions on technology transfer to foreign persons
 • Not just Federal Contracts but Corporate Grants/Gifts as well

• March 2004 DOC Inspector General report citing perceived deemed export loopholes at universities
 ▫ Grabs the attention of University Presidents and Provosts
 ▫ Generates over 300 comments against resulting proposed rule

• Only recently have Universities dedicated specific persons to cover export compliance and outreach
 ▫ Still Widespread Lack of Awareness and Expertise in Academia, resulting in inability to “Speak a Common Language”
University/Industry Collaborations and Export Control – Emerging Themes

• Significant Increases in US Defense Budget =
 • Increased Funding to Industrial Primes
 • More Export Control “Flow-Downs” to Universities
 • Greater Emphasis on “Applied” Research
 • Pressures Fundamental Research Exclusion (FRE)

• Shift in Focus of Export Controls from Hardware to Technology
 • Creates “Deemed Export” Issue for Universities
 • Corporate Misunderstanding of “Use Technology”
 • University Misunderstanding of “Fundamental Research”
University/Industry Collaborations and Export Control - Emerging Themes (2)

- Also Heightened Industrial Focus on Deemed Exports and Use of NDAs w/Export Clauses
 - Agreement terms that anticipate university fundamental research becoming export controlled “developmental” research
- Increased Prevalence of SBIRs/STTRs
 - Commercialization Requirements
 - Dilemma: How do Universities Partner in Phase II and Phase III SBIR/STTR Program Elements?
- Need for Universities to Invoke Termination Provisions if Policies Jeopardized
 - Possible Costs to Doctoral Dissertations
Steps That Would Facilitate Industry/University Space Science Collaboration

• Universities understanding that:
 ▫ Elimination of Contract Terms that Limit Publication or Foreign National Access to Research Results DOESN’T MEAN IT’S FUNDAMENTAL RESEARCH!

• Universities understanding that:
 ▫ The FRE only applies to information, not tangible items

• Universities understanding that:
 ▫ Acceptance of Industry NDA’s do not destroy their ability to characterize their work as fundamental research excluded from export control
 • It is the openness of the results of the research that characterize the work as qualifying as “Public Domain” per Part 120.11
Steps That Would Facilitate Industry/University Space Science Collaboration (2)

• Universities understanding that:
 ▫ Procedures can be put into place to safeguard the FRE while permitting work with NDAs or export control terms
 • Notification and review by university official before acceptance of “export control-listed” proprietary or confidential information
 • EAR99 technology and items do not pose deemed export issues
 • Universities should not be scared by language that references requirement to abide by export laws and regulations
Steps That Would Facilitate Industry/University Space Science Collaboration (3)

• **Industry understanding that:**
 ▫ **The FAR and DFARS define “applied research” as advancing the “state of the art”**
 · Fabrication of *proof-of-concept devices* and *prototypes* serve to advance the state of the art and are essential to university space science research
 · Universities regard this activity as falling within the FRE
 · NASA has clarified that fully-functional, field-deployable systems are not covered by the FRE, and Universities understand that

• **Industry understanding that:**
 ▫ Many university openness policies are not violated if collaborative, but regulated work, is conducted off-campus
 · Suggest this possibility in negotiations
Steps That Would Facilitate Industry/University Space Science Collaboration (4)

- Industry understanding that:
 - ITAR-related fundamental space science research does not have to be published before foreign nationals engage in the conduct of such research
 - Fundamental research could not be undertaken at universities if this were the case
 - Univ. of Michigan Advisory Opinion from State on student-run FEA Cathode Technology Project supports this assertion
Steps That Would Facilitate Industry/University Space Science Collaboration (5)

• Industry understanding that:
 ▫ Universities will want to have industry partners identify and mark all ITAR technical data and defense articles before transfer, similar to standard industry practice for Confidential Information
 • Will create a “comfort zone” for the university partner

• US Government Agencies understanding that:
 ▫ Distribution statements that limit circulation of research results from Contracted Fundamental Research are inherently inconsistent with the public domain intent of NSDD-189, the EAR and ITAR, and the DoD Contracted Fundamental Research Memo from John Young of 2008
Looking Into the Future

• History has shown that University/Industry ITAR-related collaborations can be successful, with outstanding benefits for science
 ▫ Gravity Probe-B
 ▫ NASA’s Helioseismic and Magnetic Imager (HMI)
 ▫ Gamma Ray Large Area Telescope (GLAST/FERMI)
• Negotiating such collaborations take extra time, energy, and creative solutions
 ▫ If academia and industry are committed to finding a middle-ground and enter into negotiations with trust and an open mind, agreements that meet both parties’ needs are achievable with hard work and patience